Å·±¦ÓéÀÖ

Eddington Quotes

Quotes tagged as "eddington" Showing 1-4 of 4
Ronald A. Fisher
“It will be noticed that the fundamental theorem proved above bears some remarkable resemblances to the second law of thermodynamics. Both are properties of populations, or aggregates, true irrespective of the nature of the units which compose them; both are statistical laws; each requires the constant increase of a measurable quantity, in the one case the entropy of a physical system and in the other the fitness, measured by m, of a biological population. As in the physical world we can conceive the theoretical systems in which dissipative forces are wholly absent, and in which the entropy consequently remains constant, so we can conceive, though we need not expect to find, biological populations in which the genetic variance is absolutely zero, and in which fitness does not increase. Professor Eddington has recently remarked that 'The law that entropy always increases—the second law of thermodynamics—holds, I think, the supreme position among the laws of nature'. It is not a little instructive that so similar a law should hold the supreme position among the biological sciences. While it is possible that both may ultimately be absorbed by some more general principle, for the present we should note that the laws as they stand present profound differencesâ€�-(1) The systems considered in thermodynamics are permanent; species on the contrary are liable to extinction, although biological improvement must be expected to occur up to the end of their existence. (2) Fitness, although measured by a uniform method, is qualitatively different for every different organism, whereas entropy, like temperature, is taken to have the same meaning for all physical systems. (3) Fitness may be increased or decreased by changes in the environment, without reacting quantitatively upon that environment. (4) Entropy changes are exceptional in the physical world in being irreversible, while irreversible evolutionary changes form no exception among biological phenomena. Finally, (5) entropy changes lead to a progressive disorganization of the physical world, at least from the human standpoint of the utilization of energy, while evolutionary changes are generally recognized as producing progressively higher organization in the organic world.”
Ronald A. Fisher, The Genetical Theory of Natural Selection

“[In high school] my interests outside my academic work were debating, tennis, and to a lesser extent, acting. I became intensely interested in astronomy and devoured the popular works of astronomers such as Sir Arthur Eddington and Sir James Jeans, from which I learnt that a knowledge of mathematics and physics was essential to the pursuit of astronomy. This increased my fondness for those subjects.”
Allan McLeod Cormack

Helge Kragh
“Following the path of earlier unificationists, one of Eddington's aims was to reduce the contingencies in the description of nature, for example, by explaining the fundamental constants of physics rather than accepting them as merely experimental data. One of these constants was the fine-structure constant ..., which entered prominently in Dirac's theory and was known to be about 1/137.”
Helge Kragh, Quantum Generations: A History of Physics in the Twentieth Century

G.H. Hardy
“I spoke of the 'real' mathematics of Fermat and other great mathematicians, the mathematics which has permanent aesthetic value, as for example the best Greek mathematics has, the mathematics which is eternal because the best of it may, like the best literature, continue to cause intense emotional satisfaction to thousands of people after thousands of years. These men were all primarily pure mathematicians; but I was not thinking only of pure mathematics. I count Maxwell and Einstein, Eddington and Dirac, among 'real' mathematicians. The great modern achievements of applied mathematics have been in relativity and quantum mechanics, and these subjects are, at present at any rate, almost as 'useless' as the theory of numbers. It is the dull and elementary parts of applied mathematics, as it is the dull and elementary parts of pure mathematics, that work for good or ill.”
G.H. Hardy, A Mathematician's Apology